Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1 -form

Seoung Dal Jung
Department of Mathematics, Cheju National University, Jeju 690-756, Republic of Korea

Received 4 November 2005; received in revised form 20 April 2006; accepted 21 April 2006
Available online 17 November 2006

Abstract

On a compact Riemannian manifold M with a transverse spin foliation \mathcal{F} of codimension $q \geq 3$, if M admits a non-trivial basic harmonic 1-form ω, then any eigenvalue λ of the basic Dirac operator satisfies the inequality $\lambda^{2} \geq \frac{q-1}{4(q-2)} \inf _{M}\left(\sigma^{\nabla}+|\kappa|^{2}\right)$, where σ^{∇} is the transversal scalar curvature and κ is the mean curvature form of \mathcal{F}. In the limiting case, \mathcal{F} is minimal and ω is parallel. (C) 2006 Elsevier B.V. All rights reserved.

MSC: 53C12; 53C27; 57R30
Keywords: Transverse spin foliation; Basic Dirac operator; Minimal foliation

1. Introduction

Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a transverse spin foliation \mathcal{F} of codimension q and a bundle-like metric g_{M}. In 2001, Jung [5] proved that any eigenvalue λ of the basic Dirac operator D_{b} satisfies the inequality

$$
\begin{equation*}
\lambda^{2} \geq \frac{q}{4(q-1)} \inf _{M} K^{\sigma}, \tag{1.1}
\end{equation*}
$$

where $K^{\sigma}=\sigma^{\nabla}+|\kappa|^{2}, \sigma^{\nabla}$ is the transversal scalar curvature and κ is the mean curvature form of \mathcal{F}. In the limiting case, the foliation is minimal, transversally Einsteinian with constant transversal scalar curvature and there is no nontrivial basic harmonic 1 -form. This means that on a transverse spin foliation admitting a non-trivial basic harmonic 1 -form, there exists a sharper estimate than (1.1). Namely,

Theorem 1.1. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a transverse spin foliation \mathcal{F} of codimension $q \geq 3$ and a bundle-like metric g_{M} such that $\Delta_{B} \kappa=0$. Assume that $K^{\sigma}>0$. If M admits a non-trivial basic harmonic 1-form ω of constant length, then any eigenvalue λ of the basic Dirac operator D_{b} satisfies

$$
\begin{equation*}
\lambda^{2} \geq \frac{q-1}{4(q-2)} \inf _{M} K^{\sigma} . \tag{1.2}
\end{equation*}
$$

In the limiting case, \mathcal{F} is minimal and ω is parallel.

E-mail address: sdjung@cheju.ac.kr.

In the case of foliations by points, Theorem 1.1 is given by Moroianu and Ornea [10]. Recently, Habib [4] proved lower bounds for the eigenvalues of the basic Dirac operator on a Kähler spin foliation.

2. The generalized Weitzenböck formula

Let $\left(M, g_{M}, \mathcal{F}\right)$ be a $(p+q)$-dimensional Riemannian manifold with a transverse spin foliation \mathcal{F} of codimension q and a bundle-like metric g_{M} with respect to \mathcal{F} (see [3,5,9] for foliation and [1,2,7] for spin case). We recall the exact sequence

$$
\begin{equation*}
0 \rightarrow L \rightarrow T M \xrightarrow{\pi} Q \rightarrow 0 \tag{2.1}
\end{equation*}
$$

determined by the tangent bundle L and the normal bundle $Q=T M / L$ of \mathcal{F}. The assumption of g_{M} being a bundlelike metric means that the induced metric g_{Q} on the normal bundle $Q \equiv L^{\perp}$ satisfies the holonomy invariance condition $\theta(X) g_{Q}=0$ for all $X \in \Gamma L$, where $\theta(X)$ denotes the Lie derivative with respect to X. The transversal Levi-Civita connection ∇ is given by

$$
\nabla_{X} s= \begin{cases}\pi\left(\left[X, Y_{s}\right]\right) & \forall X \in \Gamma L \tag{2.2}\\ \pi\left(\nabla_{X}^{M} Y_{s}\right) & \forall X \in \Gamma L^{\perp},\end{cases}
$$

where $Y_{s} \in \Gamma L^{\perp}$ corresponding to s under the canonical isomorphism $L^{\perp} \cong Q$. Let $R^{\nabla}, \rho^{\nabla}$ and σ^{∇} be respectively the curvature tensor, the transversal Ricci operator and the transversal scalar curvature of \mathcal{F}. The foliation \mathcal{F} is said to be (transversally) Einsteinian if

$$
\begin{equation*}
\rho^{\nabla}=\frac{1}{q} \sigma^{\nabla} \cdot i d \tag{2.3}
\end{equation*}
$$

with constant transversal scalar curvature σ^{∇}. The mean curvature form κ for L is given by

$$
\begin{equation*}
\kappa(X)=g_{Q}\left(\sum_{i=1}^{p} \pi\left(\nabla_{E_{i}}^{M} E_{i}\right), X\right) \quad \forall X \in \Gamma Q, \tag{2.4}
\end{equation*}
$$

where $\left\{E_{i}\right\}_{i=1, \ldots, p}$ is a local orthonormal basis of L. Let $\Omega_{B}^{r}(\mathcal{F})$ be the space of all basic r-forms, i.e., $\phi \in \Omega_{B}^{r}(\mathcal{F})$ if and only if $i(X) \phi=0$ and $\theta(X) \phi=0$ for any $X \in \Gamma L$, where $i(X)$ is an interior product. \mathcal{F} is said to be minimal (resp. isoparametric) if $\kappa=0$ (resp. $\kappa \in \Omega_{B}^{1}(\mathcal{F})$). It is well-known [11] that if \mathcal{F} is isoparametric on a compact manifold, κ is closed, i.e., $\mathrm{d} \kappa=0$. The basic Laplacian Δ_{B} acting on $\Omega_{B}^{*}(\mathcal{F})$ is defined by

$$
\begin{equation*}
\Delta_{B}=d_{B} \delta_{B}+\delta_{B} d_{B}, \tag{2.5}
\end{equation*}
$$

where δ_{B} is the formal adjoint of $d_{B}=\left.d\right|_{\Omega_{B}^{*}(\mathcal{F})}$, which are locally given [5] by

$$
\begin{equation*}
d_{B}=\sum_{a} E^{a} \wedge \nabla_{E_{a}}, \quad \delta_{B}=-\sum_{a} i\left(E_{a}\right) \nabla_{E_{a}}+i\left(\kappa^{\sharp}\right), \tag{2.6}
\end{equation*}
$$

where κ^{\sharp} is the g_{Q}-dual vector of $\kappa,\left\{E_{a}\right\}_{a=1, \ldots, q}$ is a local orthonormal basic frame on Q and E^{a} is its g_{Q}-dual 1 -form. Then we have the following generalized Weitzenböck formula.

Theorem 2.1. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a Riemannian manifold with a foliation \mathcal{F} of codimension q and a bundle-like metric g_{M}. Then the generalized Weitzenböck formula is given by the following: for any basic form $\phi \in \Omega_{B}^{r}(\mathcal{F})$

$$
\begin{equation*}
\Delta_{B} \phi=\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \phi+A_{\kappa^{\sharp}}(\phi)+F(\phi), \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
& \nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \phi=-\sum_{a} \nabla_{E_{a}} \nabla_{E_{a}} \phi+\nabla_{\kappa^{\sharp}} \phi, \tag{2.8}\\
& A_{\kappa^{\sharp}}(\phi)=\theta\left(\kappa^{\sharp}\right) \phi-\nabla_{\kappa^{\sharp}} \phi, \tag{2.9}\\
& F(\phi)=\sum_{a, b} E^{a} \wedge i\left(E_{b}\right) R^{\nabla}\left(E_{b}, E_{a}\right) \phi . \tag{2.10}
\end{align*}
$$

In particular, if ϕ is a basic 1-form, then $F(\phi)=\rho^{\nabla}\left(\phi^{\sharp}\right)$.
Proof. Fix $x \in M$. Let $\left\{E_{a}\right\}$ be a local orthonormal basic frame for Q satisfying $\left(\nabla E_{a}\right)_{x}=0$ and $\left\{E^{a}\right\}$ its g_{Q}-dual basis. Then for any basic form $\phi \in \Omega_{B}^{r}(\mathcal{F}),(2.6)$ implies

$$
\begin{aligned}
& d_{B} \delta_{B} \phi=-\sum_{a, b} E^{a} \wedge i\left(E_{b}\right) \nabla_{E_{a}} \nabla_{E_{b}} \phi+d_{B} i\left(\kappa^{\sharp}\right) \phi, \\
& \delta_{B} d_{B} \phi=-\sum_{a} \nabla_{E_{a}} \nabla_{E_{a}} \phi+\sum_{a, b} E^{a} \wedge i\left(E_{b}\right) \nabla_{E_{b}} \nabla_{E_{a}} \phi+i\left(\kappa^{\sharp}\right) d_{B} \phi .
\end{aligned}
$$

Summing the above two equations, we have

$$
\Delta_{B} \phi=\theta\left(\kappa^{\sharp}\right) \phi-\sum_{a} \nabla_{E_{a}} \nabla_{E_{a}} \phi+\sum_{a, b} E^{a} \wedge i\left(E_{b}\right) R^{\nabla}\left(E_{b}, E_{a}\right) \phi,
$$

which proves (2.7). On the other hand, let ϕ be a basic 1 -form and ϕ^{\sharp} its g_{Q}-dual vector. Then we have

$$
g_{Q}\left(F(\phi), E^{c}\right)=\sum_{b} g_{Q}\left(R^{\nabla}\left(\phi^{\sharp}, E_{b}\right) E_{b}, E_{c}\right)=g_{Q}\left(\rho^{\nabla}\left(\phi^{\sharp}\right), E_{c}\right) .
$$

This yields that for any basic 1-form $\phi, F(\phi)=\rho^{\nabla}\left(\phi^{\sharp}\right)$.
It is well-known [5] that the operator $\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}}$ is non-negative and formally self-adjoint, that is,

$$
\begin{equation*}
\int_{M} g_{Q}\left(\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \phi, \psi\right)=\int_{M} g_{Q}\left(\nabla_{\mathrm{tr}} \phi, \nabla_{\mathrm{tr}} \psi\right) \tag{2.11}
\end{equation*}
$$

for all $\phi, \psi \in \Omega_{B}^{r}(\mathcal{F})$, where $g_{Q}\left(\nabla_{\mathrm{tr}} \phi, \nabla_{\mathrm{tr}} \psi\right)=\sum_{a=1}^{q} g_{Q}\left(\nabla_{E_{a}} \phi, \nabla_{E_{a}} \psi\right)$.
Corollary 2.2. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a foliation \mathcal{F} of codimension q and a bundlelike metric g_{M}. Then for any basic harmonic r-form $\phi \in \Omega_{B}^{r}(\mathcal{F})$

$$
\begin{equation*}
-\frac{1}{2} \Delta_{B}|\phi|^{2}=\left|\nabla_{\mathrm{tr}} \phi\right|^{2}+g_{Q}\left(A_{\kappa^{\sharp}}(\phi), \phi\right)+g_{Q}(F(\phi), \phi) . \tag{2.12}
\end{equation*}
$$

3. Eigenvalue estimate for basic Dirac operator

Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold M with a transverse spin foliation \mathcal{F} of codimension q and a bundle-like metric g_{M} such that $\Delta_{B} \kappa=0$. The existence of such a metric is assured from [8,9]. Let $S(\mathcal{F})$ be a foliated spinor bundle on a transverse spin foliation \mathcal{F} and $\langle\cdot, \cdot\rangle$ a hermitian scalar product on $S(\mathcal{F})$. By the Clifford multiplication "." in the fibers of $S(\mathcal{F})$ for any vector field $X \in Q$ and any spinor field $\Psi \in S(\mathcal{F})$, the Clifford product $X \cdot \Psi \in S(\mathcal{F})$ is well-defined. This product has the following properties: for any $X, Y \in \Gamma Q, Z \in Г T M$ and $\Phi, \Psi \in \Gamma S(\mathcal{F})$,

$$
\begin{align*}
& (X \cdot Y+Y \cdot X) \Psi=-2 g_{Q}(X, Y) \Psi \tag{3.1}\\
& \langle X \cdot \Psi, \Phi\rangle+\langle\Psi, X \cdot \Phi\rangle=0 \tag{3.2}\\
& \nabla_{Z}^{S}(X \cdot \Psi)=\left(\nabla_{Z} X\right) \cdot \Psi+X \cdot\left(\nabla_{Z}^{S} \Psi\right) \tag{3.3}
\end{align*}
$$

where ∇^{S} is a metric covariant derivation on $S(\mathcal{F})$, i.e., for any $X \in \Gamma T M$ and $\Psi, \Phi \in \Gamma S(\mathcal{F})$, it holds that

$$
\begin{equation*}
X\langle\Psi, \Phi\rangle=\left\langle\nabla_{X}^{S} \Psi, \Phi\right\rangle+\left\langle\Psi, \nabla_{X}^{S} \Phi\right\rangle . \tag{3.4}
\end{equation*}
$$

From now on, we write ∇ instead of ∇^{S}. Moreover if we define the Clifford product $\xi \cdot \Psi$ of a 1 -form $\xi \in Q^{*}$ and a spinor field Ψ as

$$
\begin{equation*}
\xi \cdot \Psi \equiv \xi^{\sharp} \cdot \Psi \tag{3.5}
\end{equation*}
$$

where $\xi^{\sharp} \in Q$ is a g_{Q}-dual vector of ξ, then any basic r-form can be considered as an endomorphism of $S(\mathcal{F})$. The curvature transform R^{S} on $S(\mathcal{F})$ is given [5,7] as

$$
\begin{equation*}
R^{S}(X, Y) \Psi=\frac{1}{4} \sum_{a, b} g_{Q}\left(R^{\nabla}(X, Y) E_{a}, E_{b}\right) E_{a} \cdot E_{b} \cdot \Psi, \quad \forall X, Y \in Г T M . \tag{3.6}
\end{equation*}
$$

Then we have the following proposition.
Proposition 3.1 ([5]). On the transverse spin foliation \mathcal{F}, we have the following: for any spinor $\Psi \in \Gamma S(\mathcal{F})$

$$
\begin{align*}
& \sum_{a<b} E_{a} \cdot E_{b} \cdot R^{S}\left(E_{a}, E_{b}\right) \Psi=\frac{1}{4} \sigma^{\nabla} \Psi, \tag{3.7}\\
& \sum_{a} E_{a} \cdot R^{S}\left(X, E_{a}\right) \Psi=-\frac{1}{2} \rho^{\nabla}(X) \cdot \Psi, \quad \forall X \in \Gamma Q . \tag{3.8}
\end{align*}
$$

The transversal Dirac operator $D_{\text {tr }}$ acting on sections of $S(\mathcal{F})$ is locally given by [3,5,6]

$$
\begin{equation*}
D_{\mathrm{tr}} \Psi=\sum_{a} E_{a} \cdot \nabla_{E_{a}} \Psi-\frac{1}{2} \kappa \cdot \Psi \tag{3.9}
\end{equation*}
$$

where $\left\{E_{a}\right\}_{a=1, \ldots, q}$ is a local orthonormal basic frame in Q.
Proposition 3.2 ([3,5]). On an isoparametric transverse spin foliation \mathcal{F} with $\delta_{B} \kappa=0$, the Lichnerowicz type formula is given by

$$
\begin{equation*}
D_{\mathrm{tr}}^{2} \Psi=\nabla_{\mathrm{tr}}^{*} \nabla_{\mathrm{tr}} \Psi+\frac{1}{4} K^{\sigma} \Psi \tag{3.10}
\end{equation*}
$$

where $K^{\sigma}=\sigma^{\nabla}+|\kappa|^{2}$.
At any point $x \in M$, we choose normal coordinates at this point so that $\left(\nabla E_{a}\right)(x)=0$ for all a. From now on, all the computations in this paper will be made in such charts.

Lemma 3.3. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a Riemannian manifold with a transverse spin foliation \mathcal{F} and a bundle-like metric g_{M}. Then for any basic harmonic 1-form $\omega \in \Omega_{B}^{1}(\mathcal{F})$

$$
\begin{equation*}
D_{\mathrm{tr}}(\omega \cdot \Psi)=-\omega \cdot D_{\mathrm{tr}} \Psi-2 \nabla_{\omega^{\sharp}} \Psi . \tag{3.11}
\end{equation*}
$$

Proof. For any spinor Ψ, a simple calculation gives

$$
\begin{aligned}
D_{\mathrm{tr}}(\omega \cdot \Psi) & =-\sum_{a} \omega \cdot E_{a} \cdot \nabla_{E_{a}} \Psi-2 \nabla_{\omega^{\sharp}} \Psi+\frac{1}{2} \omega \cdot \kappa \cdot \Psi+\left(d_{B} \omega+\delta_{B} \omega-i\left(\kappa^{\sharp}\right) \omega\right) \Psi+g_{Q}(\kappa, \omega) \Psi \\
& =-\omega \cdot D_{\mathrm{tr}} \Psi-2 \nabla_{\omega^{\sharp}} \Psi+\left(d_{B} \omega+\delta_{B} \omega\right) \Psi .
\end{aligned}
$$

Since ω is a basic harmonic 1-form, $d_{B} \omega=\delta_{B} \omega=0$. Hence the proof is completed.
Now, we define the subspace $\Gamma_{B} S(\mathcal{F})$ of basic or holonomy invariant sections of $S(\mathcal{F})$ by

$$
\Gamma_{B} S(\mathcal{F})=\left\{\Psi \in \Gamma S(\mathcal{F}) \mid \nabla_{X} \Psi=0, \forall X \in \Gamma L\right\} .
$$

Then we see that $D_{\text {tr }}$ leaves $\Gamma_{B} S(\mathcal{F})$ invariant if and only if $\kappa \in \Omega_{B}^{1}(\mathcal{F})$. Let $D_{b}=D_{\text {tr }} \Gamma_{B} S(\mathcal{F}): \Gamma_{B} S(\mathcal{F}) \rightarrow \Gamma_{B} S(\mathcal{F})$. This operator D_{b} is called the basic Dirac operator on (smooth) basic sections. It is well-known [3] that D_{b} and D_{b}^{2} have discrete spectrums on M.
Assume that $\omega \in \Omega_{B}^{1}(\mathcal{F})$ is a basic harmonic 1-form of unit length. Then we define the operator $T_{\mathrm{tr}}: Q \otimes S(\mathcal{F}) \rightarrow$ $S(\mathcal{F})$ as

$$
\begin{equation*}
T_{X} \Psi=\nabla_{X} \Psi+\frac{1}{q-1} X \cdot D_{\mathrm{tr}} \Psi-\frac{1}{q-1} \omega(X) \omega \cdot D_{\mathrm{tr}} \Psi-\omega(X) \nabla_{\omega^{\sharp}} \Psi \tag{3.12}
\end{equation*}
$$

for any $X \in \Gamma Q$ and $\Psi \in S(\mathcal{F})$. By a direct calculation, we have

$$
\begin{align*}
\left|T_{\mathrm{tr}} \Psi\right|^{2}= & \left|\nabla_{\mathrm{tr}} \Psi\right|^{2}-\frac{1}{q-1}\left|D_{\mathrm{tr}} \Psi\right|^{2}-\left|\nabla_{\omega^{\sharp}} \Psi\right|^{2}-\frac{1}{q-1} \operatorname{Re}\left\langle\kappa \cdot \Psi, D_{\mathrm{tr}} \Psi\right\rangle \\
& -\frac{2}{q-1} \operatorname{Re}\left\langle\nabla_{\omega^{\sharp}} \Psi, \omega \cdot D_{\mathrm{tr}} \Psi\right\rangle . \tag{3.13}
\end{align*}
$$

On the other hand, Lemma 3.3 implies

$$
\begin{equation*}
\left|D_{\mathrm{tr}}(\omega \cdot \Psi)\right|^{2}=\left|\omega \cdot D_{\mathrm{tr}} \Psi\right|^{2}+4\left|\nabla_{\omega^{\sharp}} \Psi\right|^{2}+4 \operatorname{Re}\left\langle\omega \cdot D_{\mathrm{tr}} \Psi, \nabla_{\omega^{\sharp}} \Psi\right\rangle . \tag{3.14}
\end{equation*}
$$

Hence (3.13) and (3.14) yield

$$
\begin{aligned}
\left|T_{\mathrm{tr}} \Psi\right|^{2}= & \left|\nabla_{\mathrm{tr}} \Psi\right|^{2}-\frac{1}{q-1}\left|D_{\mathrm{tr}} \Psi\right|^{2}-\frac{q-3}{q-1}\left|\nabla_{\omega^{\sharp}} \Psi\right|^{2}-\frac{1}{q-1} \operatorname{Re}\left\langle\kappa \cdot \Psi, D_{\mathrm{tr}} \Psi\right\rangle \\
& -\frac{1}{2(q-1)}\left\{\left|D_{\mathrm{tr}}(\omega \cdot \Psi)\right|^{2}-\left|\omega \cdot D_{\mathrm{tr}} \Psi\right|^{2}\right\} .
\end{aligned}
$$

By integrating the above equation with the Lichnerowicz type formula (3.10), we get

$$
\begin{aligned}
\int_{M}\left|T_{\text {tr }} \Psi\right|^{2}= & \frac{q-2}{q-1} \int_{M}\left|D_{\text {tr }} \Psi\right|^{2}-\frac{1}{4} \int_{M} K^{\sigma}|\Psi|^{2}-\frac{q-3}{q-1} \int_{M}\left|\nabla_{\omega^{\sharp}} \Psi\right|^{2} \\
& -\frac{1}{2(q-1)} \int_{M}\left\{\left|D_{\text {tr }}(\omega \cdot \Psi)\right|^{2}-\left|\omega \cdot D_{\mathrm{tr}} \Psi\right|^{2}\right\}-\frac{1}{q-1} \int_{M} \operatorname{Re}\left\langle\kappa \cdot \Psi, D_{\mathrm{tr}} \Psi\right\rangle .
\end{aligned}
$$

Let $D_{b} \Psi_{1}=\lambda_{1} \Psi_{1}$, where λ_{1} is the first eigenvalue of D_{b}. Since $\left\langle\Psi_{1}, X \cdot \Psi_{1}\right\rangle$ is pure imaginary, the last term in the above equation is zero. Hence we have

$$
\begin{align*}
& \int_{M}\left|T_{\mathrm{tr}} \Psi_{1}\right|^{2}+\frac{q-3}{q-1} \int_{M}\left|\nabla_{\omega^{\sharp}} \Psi_{1}\right|^{2}+\frac{1}{2(q-1)} \int_{M}\left\{\left|D_{b}\left(\omega \cdot \Psi_{1}\right)\right|^{2}-\left|\omega \cdot D_{b} \Psi_{1}\right|^{2}\right\} \\
& \quad=\int_{M}\left(\frac{q-2}{q-1} \lambda_{1}^{2}-\frac{1}{4} K^{\sigma}\right)\left|\Psi_{1}\right|^{2} . \tag{3.15}
\end{align*}
$$

On the other hand, the Rayleigh inequality implies that for every spinor field Φ

$$
\lambda_{1}^{2} \leq \frac{\int_{M}\left|D_{b} \Phi\right|^{2}}{\int_{M}|\Phi|^{2}}
$$

This means that for $\Phi=\omega \cdot \Psi_{1}$

$$
\begin{equation*}
\int_{M}\left|D_{b}\left(\omega \cdot \Psi_{1}\right)\right|^{2} \geq \lambda_{1}^{2} \int_{M}\left|\omega \cdot \Psi_{1}\right|^{2}=\int_{M}\left|\omega \cdot D_{b} \Psi_{1}\right|^{2} \tag{3.16}
\end{equation*}
$$

From (3.16), the left hand side of (3.15) is non-negative if $q \geq 3$. This implies the following theorem.
Theorem 3.4. Let $\left(M, g_{M}, \mathcal{F}\right)$ be a compact Riemannian manifold with a transverse spin foliation \mathcal{F} of codimension $q \geq 3$ and a bundle-like metric g_{M} such that $\Delta_{B} \kappa=0$. Assume $K^{\sigma}>0$. If M admits a non-trivial basic harmonic 1 -form ω of constant length, then any eigenvalue λ of D_{b} satisfies

$$
\begin{equation*}
\lambda^{2} \geq \frac{q-1}{4(q-2)} \inf _{M} K^{\sigma} \tag{3.17}
\end{equation*}
$$

4. The limiting case

Now, we study the limiting case of (3.17). Let Ψ_{1} be the eigenspinor corresponding to $\lambda_{1}=\frac{q-1}{4(q-2)}$ inf $K^{\sigma}(q \geq 3)$. From (3.15), Ψ_{1} satisfies the following equation

$$
\begin{equation*}
T_{\mathrm{tr}} \Psi_{1}=0 \tag{4.1}
\end{equation*}
$$

Equivalently, we have

$$
\begin{equation*}
\nabla_{X} \Psi_{1}=-\frac{\lambda_{1}}{q-1} X \cdot \Psi_{1}+\frac{\lambda_{1}}{q-1} \omega(X) \omega \cdot \Psi_{1}+\omega(X) \nabla_{\omega^{\sharp}} \Psi_{1} . \tag{4.2}
\end{equation*}
$$

We investigate the limiting case when $q>3$ and when $q=3$ because of (3.15).
Case (I) When $q>3$. From (3.15), we get directly

$$
\begin{equation*}
\nabla_{\omega^{\sharp}} \Psi_{1}=0 . \tag{4.3}
\end{equation*}
$$

From (4.2) and (4.3), we have that for any $X \in Q$

$$
\begin{equation*}
\nabla_{X} \Psi_{1}=-\frac{\lambda_{1}}{q-1} X \cdot \Psi_{1}+\frac{\lambda_{1}}{q-1} \omega(X) \omega \cdot \Psi_{1} \tag{4.4}
\end{equation*}
$$

Taking Clifford multiplication of (4.4) with E_{a} yields

$$
\begin{equation*}
\kappa \cdot \Psi_{1}=0, \tag{4.5}
\end{equation*}
$$

which implies $\kappa=0$, i.e., \mathcal{F} is minimal.
Now, we compute $\sum_{a} E_{a} \cdot R^{S}\left(X, E_{a}\right) \Psi_{1}$. From (4.4), we have that for any $X, Y \in \Gamma Q$

$$
\begin{align*}
\left(\frac{q-1}{\lambda_{1}}\right)^{2} \nabla_{X} \nabla_{Y} \Psi_{1}= & \{Y \cdot X-\omega(Y) \omega(X)-\omega(X) Y \cdot \omega-\omega(Y) \omega \cdot X\} \cdot \Psi_{1} \\
& -\frac{q-1}{\lambda_{1}}\left\{\nabla_{X} Y-\omega\left(\nabla_{X} Y\right) \omega-\left(\nabla_{X} \omega\right)(Y) \omega-\omega(Y) \nabla_{X} \omega\right\} \cdot \Psi_{1} . \tag{4.6}
\end{align*}
$$

Hence from (4.6) we have

$$
\begin{align*}
\left(\frac{q-1}{\lambda_{1}}\right)^{2} R^{S}(X, Y) \Psi_{1}= & \{(Y \cdot X-X \cdot Y)+\omega(X)(\omega \cdot Y-Y \cdot \omega)+\omega(Y)(X \cdot \omega-\omega \cdot X)\} \cdot \Psi_{1} \\
& +\frac{q-1}{\lambda_{1}}\left\{\left(\nabla_{X} \omega\right)(Y)-\left(\nabla_{Y} \omega\right)(X)+\omega(Y) \nabla_{X} \omega-\omega(X) \nabla_{Y} \omega\right\} \cdot \Psi_{1} . \tag{4.7}
\end{align*}
$$

Since ω is a basic harmonic form and $\kappa=0$, we have $\sum_{a} E_{a} \cdot \nabla_{E_{a}} \omega=0$. Hence (4.7) implies

$$
\begin{align*}
& \left(\frac{q-1}{\lambda_{1}}\right)^{2} \sum_{a} E_{a} \cdot R^{S}\left(X, E_{a}\right) \Psi_{1} \\
& =2 q\{-X+\omega(X) \omega\} \cdot \Psi_{1}+\frac{q-1}{\lambda_{1}}\left\{\nabla_{X} \omega-\sum_{a}\left(\nabla_{E_{a}} \omega\right)(X) E_{a}+\omega \cdot \nabla_{X} \omega\right\} \cdot \Psi_{1} . \tag{4.8}
\end{align*}
$$

Since ω has a unit length, $\left(\nabla_{E_{a}} \omega\right)\left(\omega^{\sharp}\right)=0$. Hence (4.8) gives

$$
\begin{equation*}
(q-1) / \lambda_{1} \sum_{a} E_{a} \cdot R^{S}\left(\omega^{\sharp}, E_{a}\right) \Psi_{1}=\left\{\nabla_{\omega^{\sharp}} \omega+\omega \cdot \nabla_{\omega^{\sharp}} \omega\right\} \cdot \Psi_{1} . \tag{4.9}
\end{equation*}
$$

On the other hand, we have that for any $Y \in \Gamma Q$

$$
\begin{aligned}
\left(d_{B} \omega\right)\left(\omega^{\sharp}, Y\right) & =\omega^{\sharp} \omega(Y)-Y \omega\left(\omega^{\sharp}\right)-\omega\left(\left[\omega^{\sharp}, Y\right]\right) \\
& =\left(\nabla_{\omega^{\sharp}} \omega\right)(Y),
\end{aligned}
$$

because $g_{Q}\left(\omega^{\sharp}, \nabla_{Y} \omega^{\sharp}\right)=0$ for all Y. Hence $d_{B} \omega=0$ yields

$$
\begin{equation*}
\left(\nabla_{\omega^{\sharp}} \omega\right)(Y)=0 \quad \forall Y \in Q, \tag{4.10}
\end{equation*}
$$

which means $\nabla_{\omega^{\sharp}} \omega=0$. Therefore (3.8) and (4.9) imply

$$
\begin{equation*}
\rho^{\nabla}\left(\omega^{\sharp}\right)=0 . \tag{4.11}
\end{equation*}
$$

Since ω is a basic harmonic 1 -form and $\kappa=0$, Corollary 2.2 and (4.8) imply that ω is parallel.
Case (II) When $q=3$. By a direct calculation, (4.2) yields

$$
\begin{equation*}
\frac{1}{2} \kappa \cdot \Psi_{1}=\omega \cdot \nabla_{\omega^{\sharp}} \Psi_{1} \tag{4.12}
\end{equation*}
$$

From (4.12), it is trivial that $\nabla_{\omega^{\sharp}} \Psi_{1}=-\frac{1}{2} \omega \cdot \kappa \cdot \Psi_{1}$. Hence (4.2) gives that for any $X \in Q$

$$
\begin{equation*}
\nabla_{X} \Psi_{1}=-\frac{1}{2}\left\{\lambda_{1} X-\lambda_{1} \omega(X) \omega-\omega(X) \omega \cdot \kappa\right\} \cdot \Psi_{1} \tag{4.13}
\end{equation*}
$$

Therefore (4.13) implies that for any $X, Y \in \Gamma Q$

$$
\begin{align*}
\nabla_{Y} \nabla_{X} \Psi_{1}= & \lambda_{1}^{2} / 4\{X \cdot Y-\omega(Y) X \cdot \omega-\omega(X) \omega \cdot Y-\omega(X) \omega(Y)\} \cdot \Psi_{1} \\
& -\lambda_{1} / 2\left\{\nabla_{Y} X-\left(\nabla_{Y} \omega\right)(X) \omega-\omega\left(\nabla_{Y} X\right) \omega-\omega(X) \nabla_{Y} \omega+\frac{1}{2} \omega(Y) X \cdot \omega \cdot \kappa\right. \\
& \left.+\frac{1}{2} \omega(X) \omega \cdot \kappa \cdot Y+\frac{1}{2} \omega(X) \omega(Y) \kappa-\frac{1}{2} \omega(X) \omega(Y) \omega \cdot \kappa \cdot \omega\right\} \cdot \Psi_{1} \\
& +\frac{1}{2}\left\{\left(\nabla_{Y} \omega\right)(X) \omega \cdot \kappa+\omega\left(\nabla_{Y} X\right) \omega \cdot \kappa+\omega(X) \nabla_{Y}(\omega \cdot \kappa)+\frac{1}{2} \omega(X) \omega(Y)(\omega \cdot \kappa)^{2}\right\} \cdot \Psi_{1} . \tag{4.14}
\end{align*}
$$

Since $\omega \cdot \kappa \cdot X-X \cdot \omega \cdot \kappa=2 \omega(X) \kappa-2 \kappa(X) \omega$ for $X \in \Gamma Q$, we have from (4.14)

$$
\begin{align*}
R^{S}(Y, X) \Psi_{1}= & \lambda_{1}^{2} / 2\left\{X \cdot Y+g_{Q}(X, Y)-\omega(Y) X \cdot \omega+\omega(X) Y \cdot \omega\right\} \cdot \Psi_{1} \\
& -\lambda_{1} / 2\left\{\left(\nabla_{X} \omega\right)(Y) \omega-\left(\nabla_{Y} \omega\right)(X) \omega+\omega(Y) \nabla_{X} \omega-\omega(X) \nabla_{Y} \omega\right. \\
& +\omega(Y) \kappa(X)-\omega(X) \kappa(Y)\} \cdot \Psi_{1} \\
& +\frac{1}{2}\left\{\omega(X) \nabla_{Y}(\omega \cdot \kappa)-\omega(Y) \nabla_{X}(\omega \cdot \kappa)+\left(\nabla_{Y} \omega\right)(X) \omega \cdot \kappa-\left(\nabla_{X} \omega\right)(Y) \omega \cdot \kappa\right\} \cdot \Psi_{1} . \tag{4.15}
\end{align*}
$$

Since ω is a basic harmonic 1-form, $\sum_{a} E_{a} \cdot \nabla_{E_{a}} \omega=-\mathrm{i}\left(\kappa^{\sharp}\right) \omega$. Hence (4.15) implies

$$
\begin{align*}
2 \sum_{a} E_{a} \cdot R^{S}\left(Y, E_{a}\right) \Psi_{1}= & \lambda^{2}\{\omega(Y) \omega-Y\} \Psi_{1} \\
& -\lambda\left\{\omega(Y) \kappa \cdot \omega+\kappa(Y)+\sum_{a}\left(\nabla_{E_{a}} \omega\right)(Y) E_{a} \cdot \omega-\omega(Y) \omega\left(\kappa^{\sharp}\right)\right\} \cdot \Psi_{1} \\
& -\left\{\nabla_{Y} \kappa+\omega(Y) \sum_{a} E_{a} \cdot \nabla_{E_{a}}(\omega \cdot \kappa)+\sum_{a}\left(\nabla_{E_{a}} \omega\right)(Y) E_{a} \cdot \omega \cdot \kappa\right\} \cdot \Psi_{1} . \tag{4.16}
\end{align*}
$$

Since $\sum_{a} E_{a} \cdot \nabla_{E_{a}}(\omega \cdot \kappa)=-g_{Q}(\omega, \kappa) \kappa+|\kappa|^{2} \omega-2 \nabla_{\omega^{\sharp}} \kappa$, (4.16) with $Y=\omega^{\sharp}$ yields

$$
\begin{equation*}
2 \sum_{a} E_{a} \cdot R^{S}\left(\omega^{\sharp}, E_{a}\right) \Psi_{1}=\left\{-\lambda_{1} \kappa \cdot \omega+\nabla_{\omega^{\sharp}} \kappa+g_{Q}(\omega, \kappa) \kappa-|\kappa|^{2} \omega\right\} \cdot \Psi_{1} . \tag{4.17}
\end{equation*}
$$

From (3.8), we have

$$
\begin{equation*}
\left\langle\left\{\rho^{\nabla}\left(\omega^{\sharp}\right)+\nabla_{\omega^{\sharp}} \kappa+g_{Q}(\omega, \kappa) \kappa-|\kappa|^{2} \omega\right\} \cdot \Psi_{1}, \Psi_{1}\right\rangle=\lambda_{1}\left\langle\kappa \cdot \omega \cdot \Psi_{1}, \Psi_{1}\right\rangle . \tag{4.18}
\end{equation*}
$$

Since $\left\langle X \cdot \Psi_{1}, \Psi_{1}\right\rangle$ is pure imaginary, the left hand side in (4.18) is pure imaginary. Hence the real part of the right hand side in (4.18) is also zero. That is,

$$
\begin{equation*}
\operatorname{Re}\left\langle\kappa \cdot \omega \cdot \Psi_{1}, \Psi_{1}\right\rangle=-g_{Q}(\omega, \kappa)\left|\Psi_{1}\right|^{2}=0 \tag{4.19}
\end{equation*}
$$

which means $\omega\left(\kappa^{\sharp}\right)=g_{Q}(\omega, \kappa)=0$. Hence from (4.13) we have

$$
\begin{equation*}
\nabla_{\kappa^{\sharp}} \Psi_{1}=-\frac{1}{2} \lambda_{1} \kappa \cdot \Psi_{1} . \tag{4.20}
\end{equation*}
$$

From Lemma 3.3 and (4.20), we have

$$
\begin{equation*}
D_{\mathrm{tr}}\left(\kappa \cdot \Psi_{1}\right)=0 \tag{4.21}
\end{equation*}
$$

From the Lichnerowicz type formula (3.10), if $K^{\sigma} \geq 0$ and >0 at some point $x \in M$, then $\operatorname{Ker} D_{\operatorname{tr}}=\{0\}$. Hence (4.21) implies

$$
\begin{equation*}
\kappa \cdot \Psi_{1}=0, \quad \text { i.e., } \kappa=0 . \tag{4.22}
\end{equation*}
$$

Since $\kappa=0$, (4.17) implies that $\rho^{\nabla}\left(\omega^{\sharp}\right)=0$. From Corollary 2.2, ω is parallel.
Hence from the two cases, we have the following theorem.
Theorem 4.1. Under the same condition as in Theorem 3.4, if there exists an eigenspinor field Ψ_{1} of the basic Dirac operator D_{b} for the eigenvalue $\lambda_{1}^{2}=\frac{q-1}{4(q-2)} \inf _{M} K^{\sigma}$, then \mathcal{F} is minimal and ω is parallel.

Acknowledgement

This paper was supported by Proj. No. R14-2002-003-01002-0 of the Korea Research Foundation, Korea 2005.

References

[1] H. Baum, T. Friedrich, R. Grunewald, I. Kath, Twistor and Killing Spinors on Riemannian Manifolds, in: Seminarbericht Nr., vol. 108, Humboldt-Universität zu, Berlin, 1990.
[2] T. Friedrich, Dirac Operators in Riemannian Geometry, in: Graduate Studies in Mathematics, vol. 25, American Mathematical Society, Prov., 2000.
[3] J.F. Glazebrook, F.W. Kamber, Transversal Dirac families in Riemannian foliations, Comm. Math. Phys. 140 (1991) $217-240$.
[4] G. Habib, Eigenvalues of the transversal Dirac operator on Kähler foliations, J. Geom. Phys. 56 (2005) 260-270.
[5] S.D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys. 39 (2001) 253-264.
[6] S.D. Jung, D.S. Kang, Eigenvalues of the basic Dirac operator and transversal twistor operator on Riemannian foliations, Far East J. Math. Sci. 14 (2004) 361-369.
[7] H.B. Lawson Jr., M.L. Michelsohn, Spin Geometry, Princeton Univ. Press, Princeton, New Jersey, 1989.
[8] P. March, M. Min-Oo, E.A. Ruh, Mean curvature of Riemannian foliations, Canad. Math. Bull. 39 (1996) 95-105.
[9] A. Mason, An application of stochastic flows to Riemannian foliations, Houston J. Math. 26 (2000) 481-515.
[10] A. Moroianu, L. Ornea, Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length, C. R. Math. Acad. Sci. Paris 338 (2004) 561-564.
[11] Ph. Tondeur, Foliations on Riemannian Manifolds, Springer-Verlag, New-York, 1988.

